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Spintronics: Basics and Applications

Lecture 7

Spin Orbit Torque (SOT)



The spintronics “goose game”
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MRAM: STT vs SOT

4Adapted from doi: 10.3389/fnano.2021.732916 

SOT employs in-plane current injection to write:
1) separates the reading and writing paths
2) Less power required since current does need to pass through the 

insulating spacer
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SOC in non magnetic (NM) bulk
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A free electron with spin 𝝈 and moment 𝒑 moving in 
an external magnetic field 𝑩 feels:

𝐹𝐿𝑜𝑟𝑒𝑛𝑡𝑧 =
−𝑒

𝑚
𝒑 × 𝑩

In crystals, electrons move with relativistic speed in the 
gradient of the crystal field potential. In the electron rest 
frame, this correspond to a magnetic field: 

𝐻𝑆𝑂 = −𝜇𝐵𝑩𝑒𝑓𝑓 · 𝝈 = −𝜇𝐵/𝑚𝑐
2 (𝜵𝑉 × 𝒑) · 𝝈  𝒍 · 𝝈

𝐻𝑍𝑒𝑒𝑚𝑎𝑛 = −𝜇𝐵 𝑩 · 𝝈

𝑩𝑒𝑓𝑓 =
1

𝑚𝑐2
𝜵𝑉 × 𝒑

Spin-orbit coupling: 

A twofold degenerate spin level might be split by SOC into two levels with 
spin parallel (𝐻𝑆𝑂 𝑙 𝜎) and antiparallel (𝐻𝑆𝑂 − 𝑙 𝜎) to the orbit. 

However, such splitting is symmetry forbidden for central symmetric systems 
(impossible to define the direction for spin up and down). 



Rashba-Edelstein effect (REE): 2D interfaces
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𝐻 =
𝒑2

2𝑚𝑒
+ 𝑒𝑉𝑎𝑡 −

𝑒ℏ

2𝑚𝑒
2𝑐2

(∇𝑉𝑎𝑡 ∧ 𝒑∕∕) ∙ 𝝈

The absence of an inversion symmetry center at the crystal surface or at 2D interfaces 
breaks this symmetry 

𝐻 =
𝒑2

2𝑚𝑒
+ 𝑒𝑉𝑎𝑡 −

𝑒ℏ

2𝑚𝑒
2𝑐2

(∇𝑉𝑎𝑡 ∧ 𝒑∕∕) ∙ 𝝈 +

−
𝑒ℏ𝐸𝑠

2𝑚𝑒
2𝑐2

ො𝒛 ∧ 𝒑∕∕ ∙ 𝝈∕∕ + 𝑒𝐸𝑠𝑧

https://doi.org/10.1039/D3CP04242A

N.B.: 
1) in these Hamiltonians Vee is not included for simplicity
2) at surface electrons move parallel to the surface -> 𝒑 = 𝒑∕∕

Es originates from the atomic potential 
perturbed by the breaking symmetry at interface

Free-standing 2D electron gas:       𝑉 = 𝑉𝑎𝑡

2D electron gas + support:             𝑉 = 𝑉𝑎𝑡 + 𝐸𝑠𝑧

Symmetric case

Broken symmetry

https://doi.org/10.1039/D3CP04242A
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REE splitting
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𝐻 =
𝒑2

2𝑚𝑒
+ 𝑒𝑉 + 𝑉𝑆𝑂 𝒍 ∙ 𝝈 +

𝐻𝑅𝐸 + 𝑒𝐸𝑠𝑧

𝐻𝑅𝐸 =
−𝑒ℏ𝐸𝑠

2𝑚𝑒
2𝑐2

ො𝒛 ∧ 𝒑∕∕ ∙ 𝝈∕∕ =
−𝑒ℏ2𝐸𝑠

2𝑚𝑒
2𝑐2

ො𝒛 ∧ 𝒌∕∕ ∙ 𝝈∕∕ = 𝛼𝑅𝐸 ො𝒛 ∧ 𝒌∕∕ ∙ 𝝈∕∕

RE (Rashba-Edelstein) Hamiltonian:

Inverted splitting between spin polarized bands at 
inverted wave vector k (black corresponds to 𝐻𝑅𝐸 = 0)
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Because of SOC:
1) spins align perpendicularly 

to the momenta
2) splitting of spin bands

𝐻 =
𝒑2

2𝑚𝑒
+ 𝑒𝑉𝑎𝑡 −

𝑒ℏ

2𝑚𝑒
2𝑐2

(∇𝑉𝑎𝑡 ∧ 𝒑∕∕) ∙ 𝝈 +

−
𝑒ℏ𝐸𝑠

2𝑚𝑒
2𝑐2

ො𝒛 ∧ 𝒑∕∕ ∙ 𝝈∕∕ + 𝑒𝐸𝑠𝑧
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1D case
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REE splitting
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Because of SOC:
1) spins align perpendicularly to the momenta
2) splitting of spin bands

N.B.: arrow color code reflects the 𝝈𝑦 character

𝐻𝑅𝐸 = 0

kx

Top view

ky
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ER is used to quantify the REE

Chiral spin texture characterized by 𝒌𝑥𝝈𝑦 𝒌𝑦𝝈𝑥 spin-momentum locking



Rashba splitting of Au(111) surface state

9Phys. Rev. Lett. 77, 3419 (1996); Phys. Rev. B 63, 115415 (2001)

See exercises: 7.1-7.2



Free standing 2D electron gas in an applied electric field
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Displacement of the Fermi surface under the effect of an electric field generating an unbalanced 
distribution of states in the k-space:
increased (decreased) number of states with positive (negative) kx moment

N.B.: in the sketch the blue-gray (gray) part shows the states emptied (filled) as a consequence of the applied electric field

Emptied states Extra filled states

kF

EF

-40 -30 -20 -10 0 10 20 30 40

0

20

40

60

E
(k

)

Kxkx

Ex=0
EF

Ex= −𝐸0 ො𝑥

ky

Band dispersion Momentum space



2D Rashba spin texture in an applied electric field: origin of SOT

1110.1103/RevModPhys.87.1213

Rashba spin texture for the majority chiral states
The reversed chirality will give an opposite but lower contribution

https://doi.org/10.1038/s42254-022-00490-y   

Displacement of the Fermi surface 
under the effect of an electric field

equilibrium (Je = 0) with 
zero net spin density

Nonequilibrium redistribution of 
eigenstates in an applied electric field 
resulting in a nonzero spin density 

Torque on the top magnetic 
layer via exchange

REE - SOT

Jc = -Je

Current flows opposite to electrons

Je



REE-SOT torques
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(a) Top: Rashba spin texture for one of the chiral states in equilibrium with zero net spin density. Bottom: Nonequilibrium redistribution of eigenstates in an applied 
electric field resulting in a nonzero spin density due to broken inversion symmetry of the spin texture. The exchange coupling of the carrier spin density to 
magnetization overlayer is responsible for the REE-SOT torque
(b) Top: A model equilibrium spin texture in a 2D Rashba spin-orbit coupled system with an additional time-reversal symmetry breaking exchange field 
(magnetization) of a strength much larger than the spin-orbit field. In equilibrium, all spins in this case align approximately with the x direction of the exchange field 
(magnetization). Bottom: In the presence of an electrical current along the x direction the Fermi surface (circle) is displaced along the same direction. When moving 
in momentum space, electrons experience an additional spin-orbit field proportional to ො𝒛 ∧ 𝒑𝑥 (purple arrows). In reaction to this nonequilibrium current-induced 

field (
𝑑𝒎

𝑑𝑡
= −𝛾 𝒎 ∧ 𝑯𝑒𝑓𝑓 ), spins tilt and generate a uniform, nonequilibrium out-of-plane spin density (REE-SOT torque).

(c) Top: Same as in (b) for the y direction of the exchange field. Bottom: Same as in (b) but now with the current-induced spin-orbit field align with the exchange 
field, resulting in zero tilt of the carrier spins https://doi.org/10.1103/RevModPhys.91.035004

Non magnetic material Ferromagnetic material

https://doi.org/10.1103/RevModPhys.91.035004


Bulk: (Some of the) Hall effects

13

Hall effect (HE): The longitudinal current Ix under vertical external 
magnetic field Hz contributes to the transversal voltage Vy due to the 
Lorentz force experienced by carriers.

Anomalous Hall effect (AHE): The electrons with majority and 
minority spin (due to spontaneous magnetization Mz) have opposite 
"anomalous velocity" due to spin-orbit coupling. The spin 
polarization of the current causes unbalanced electron concentration 
at two transversal sides and leads to finite voltage Vy. 

Spin Hall effect (SHE): In nonmagnetic conductor, equivalent currents 
in both spin channels with opposite velocity leads to a net spin 
current in transversal direction (but with balanced electron 
concentration at both sides  Vy = 0)



Rashba vs. atomic SOC splitting
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𝑬𝑺𝑶𝑪,𝒂𝒕 =
𝑒ℏ

2𝑚𝑒
2𝑐2

∇𝑉𝑎𝑡 ∧ 𝒑 ∙ 𝝈 =

= 𝑩𝑺𝑶𝑪,𝒂𝒕 · 𝝈  𝑉𝑆𝑂 𝒍 ∙ 𝝈

𝑬𝑺𝑶𝑪,𝒂𝒕

𝐸𝑅 = 𝛼𝑅 ො𝒛 ∧ 𝒑∕∕ ∙ 𝝈∕∕

Atomic SOC: acts on both in-plane 
and out-of-plane spins

REE SOC: acts only on in-plane spins

normalized Sx (Sy) components as 
line thickness (different 
orientations  are in red and blue).
Reduced momentum locking for 
𝑘 ≈ 0  stronger Sz character

Magnetization along z

REE + atomic
SOC

https://doi.org/10.1038/s42254-022-00490-y   https://doi.org/10.1039/D3CP04242A

https://doi.org/10.1039/D3CP04242A


Intrinsic AHE in a 2D REE system
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If EF < -D, the states with energies just below -D, which contribute most 
to the AHE, are empty. 
If EF > D, contributions from upper and lower bands cancel each other, 
and the AHE decreases quickly as EF  moves away from the band gap. 
If EF is in the gap region –D < EF < D, the AHE is resonantly enhanced 
and reaches its maximum value about −e2/2h. 

EF

EF

10.1103/RevModPhys.82.1959 ; 10.1103/PhysRevLett.97.126602 

Spin split bands due to REE + Atomic SOC

Similar arguments hold for the spin-split polarized bands 
of a bulk material



Extrinsic AHE and SHE

16

Skew (Mott) scattering:  inhomogeneous atomic potential results in a inhomogeneous effective magnetic field

𝑉 𝑟 =
𝑍𝑒

4𝜋𝜀0𝑟
Atomic potential: 𝜵𝑉 =

1

𝑟

𝑑𝑉 𝑟

𝑑𝑟
𝒓

𝑩𝑒𝑓𝑓 =
1

𝑚𝑐2
𝜵𝑉 × 𝒑

Similar to Stern-Gerlach experiment: 
opposite spins are deflected in opposite directions

https://doi.org/10.1007/s10909-024-03219-6

𝑩𝑒𝑓𝑓 is a function of r   gradient of B

r

AHE: unbalanced number of spin up and down   𝐽𝑠 ≠ 0 𝑉𝑦 ≠ 0

SHE: balanced number of spin up and down  𝐽𝑠 ≠ 0 𝑉𝑦 = 0

Screw defects or impurities are the source of these extrinsic scattering events



Observation of SHE by magneto-optical Kerr effect
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2 mm thick GaAs
ns is the spin density
T = 30 K and E = 10 mV/mm

DOI: 10.1126/science.1105514 (2004)

𝑃𝑧 𝑦 = 𝑃𝑧(0)𝑒
−𝑦/𝐿𝑠

𝑃𝑧 0 = −
𝛾 𝜇 𝑛𝑠𝐸 𝐿𝑠

𝐷

𝑃𝑥 = 𝑃𝑦 = 0

Out-of-plane 
spin polarization 

 coefficient accounting for the SOC
μ and D are the mobility and the diffusion coefficient

𝐿𝑠 = 𝐷𝜏𝑠 is the spin diffusion length  10 mm

𝜏𝑠 is the spin lifetime

Js  10 nA/mm2

Jc  50 mA/mm2

https://doi.org/10.1126/science.1105514


SHE: spin current perpendicular to charge current
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𝑱𝑆 = 𝜃𝑆𝐻
ℏ

2𝑒
𝑱𝑐 ∧ 𝝈

𝑱𝑐 = 𝑱+ + 𝑱−

𝑱𝑠 =
ℏ

2𝑒
(𝑱+ − 𝑱−)

Charge current:

Spin current:

𝜃𝑆𝐻(𝑃𝑡, 𝑇𝑎) ≈ 0.05 − 0.2
spin to charge conversion factor



Spin Hall effect: reversed spin polarized currents for Pt vs Ta

19DOI: 10.1038/NMAT3675 

SOC has opposite effect 
in Pt vs Ta

Pt: more than half filled
Ta: less than half filled

AHE detection

DOI: 10.1126/science.1218197DOI: https://doi.org/10.1103/PhysRevLett.109.096602

https://doi.org/10.1126/science.1218197
https://doi.org/10.1103/PhysRevLett.109.096602


SHE vs Rashba-Edelstein effect (REE)
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SHE: a charge current flowing in an NM layer 
generates a spin current owing to asymmetric 
spin deflection induced by SOC. 
The polarization direction is perpendicular to 
both the directions of the charge and spin 
currents.

REE: an internal electrical field E = Ezz is 
generated at the interface/surface because 
of the spatial inversion symmetry breaking. 
When an in-plane charge current flows 
through the FM/NM heterostructure, the 
conduction electrons near the interface 
move in the electrical field E, and they 
experience an effective magnetic field 
perpendicular to the current direction 
(SOC-induced Rashba field HRE):
accumulation of spins perpendicular to 
both the charge current Je and E = Ezz.

As the spin current diffuses into the adjacent FM layer, a SOT torque TSOT (via exchange) is exerted on the magnetization m. 
This torque has two components TSOT = TDL + TFL

Adv. Sci. 2021, 8, 2100847

SHE REE

TSOTTSOT



SHE vs Rashba-Edelstein effect (REE)
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Torque components as a function of the 
nonmagnetic metal thickness

Both mechanisms produce damping-like and field-like torques. 
The small red and blue arrows denote the nonequilibrium spin 
density accumulating at the interfaces, and their corresponding 
spatial distribution is sketched as a shaded area on the structure’s 
side. The large red and blue arrows represent the field-like and 
damping-like torques, respectively.

SHEREE

https://doi.org/10.1103/RevModPhys.91.035004

https://doi.org/10.1103/RevModPhys.91.035004


SOT writing and TMR read-out in p-MTJ
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TMR as a function of current pulse amplitude 
Ip injected in the Ta electrode using 50 ns 
long pulses under an in-plane magnetic field 
H=-0.4 kOe along the current. The arrows 
show the sweep direction of Ip.

https://doi.org/10.1063/1.4863407

VAHE



Orbitronics
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OHE and IOHE are the conversion of JC → JL and JL → JC in the 
materials with weak SOC, where a transverse flow of orbital angular 
momentum and voltage are induced, respectively. Thanks to SOC in 
an adjacent FM layer, the orbital current exerts a torque on the FM 
layer

https://doi.org/10.1038/s41535-023-00559-6

SHE and ISHE (invers SHE) refer to the conversions of JC → JS and 
JS → JC in the heavy metals with strong SOC, where a transverse 
flow of spin angular momentum and voltage are generated, 
respectively.

https://doi.org/10.1038/s41535-023-00559-6


OHE without SOC
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(a) Schematic band structure with plots of wave function character at each band. Here, ky = kz = 0. 
(b) When an electron in the lower band is pushed from k to k + δk by an external electric field E = Ex x, 

positive (negative) Lz is induced for the nonequilibrium state with ky > 0 (ky < 0). 

doi.org/10.1103/PhysRevLett.121.086602 ; 10.1103/PhysRevB.98.214405

Schematic illustration of the OHE without SOC 
The angular momentum L is defined from localized orbitals around the 
atom at each lattice. In the presence of an external electric field E, 
electrons with opposite L deflect in the clockwise (red arrow) or 
anticlockwise (green arrow) direction. 

𝑝𝑟𝑎𝑑𝑖 = cos𝜙 𝑝𝑥 + sin𝜙 𝑝𝑦

𝑝𝑡𝑎𝑛𝑔 = sin𝜙 𝑝𝑥 − cos𝜙 𝑝𝑦

Under the effect of the external field, pradi and ptang

get hybridized resulting in new states that can have 
finite Lz

Formal approach (ex. for p-waves)

kx

ky

https://doi.org/10.1103/PhysRevLett.121.086602


OHE with SOC
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Schematic illustration when SOC is taken into account.
Spin and orbital momenta are locked by SOC.
SHE occurs in the same or opposite direction of OHE depending 
on whether L · S is positive or negative.

doi.org/10.1103/PhysRevLett.121.086602 ; 10.1103/PhysRevB.98.214405

Schematic illustration of the OHE without SOC
The angular momentum L is defined from localized orbitals around the 
atom at each lattice. In the presence of an external electric field E, 
electrons with opposite L deflect in the clockwise (red arrow) or 
anticlockwise (green arrow) direction.

The intrinsic SHE then emerges as a by-product of the OHE resulting 

from the orbital-to-spin conversion in materials with nonzero SOC

https://doi.org/10.1103/PhysRevLett.121.086602


MRAM: STT vs SOT

26Adapted from doi: 10.3389/fnano.2021.732916 

SOT employs in-plane current injection:
1) separates the reading and writing paths
2) Less power since current does need to pass through the insulating spacer
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